
Download free eBooks at bookboon.com

Click on the ad to read more

C Programming in Linux

45 

Logic, loops and flow control

4	 Logic, loops and flow control
4.1	 Syntax of C Flow of control

We can can use the following C constructs to control program execution.
When we can count our way through a sequence or series:

for( initial value; keep on until ; incremental change )
{ do this; and this; and this; }

When we are waiting for some condition to change:

while( this is true )
{ do this; and this; and this; }

or if we want to do something at least once then test:
do { do this; and this; and this; }

while( this is true )

By 2020, wind could provide one-tenth of our planet’s 
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the 
world’s wind turbines. 

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our 
systems for on-line condition monitoring and automatic 
lubrication. We help make it more economical to create 
cleaner, cheaper energy out of thin air. 

By sharing our experience, expertise, and creativity, 
industries can boost performance beyond expectations. 

Therefore we need the best employees who can 
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering. 

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5


Download free eBooks at bookboon.com

C Programming in Linux

46 

Logic, loops and flow control

When we have a single option to test:

if( this is true )
{ do this; and this; and this; }

else
{ do this; and this; and this; }

When we have more options to test:

if( this is true )
{ do this; and this; and this; }

else if ( this is true )
 { do this; and this; and this; }

else
{ do this; and this; and this; }

When we have more options to test based on an integer or single character value:

switch( on an integer or character value )
{

case 0: do this; and this; and this; break;
case n: do this; and this; and this; break;
default:do this; and this; and this; break;

}

4.2	 Controlling what happens and in which order

This part is all about if, and then, and else and true and false – the nuts and bolts of how we express 
and control the execution of a program. This can be very dry and dusty material so to make it more 
understandable we are going to solve a problem you are going to need to solve to do any interactive 
web work of any complexity.

We will build something we can use in order to provide something like the functionality that can be 
obtained from typical getParameter(“ITEM1”) method in Java servlets or $_REQUEST[“ITEM1”] 
function in PHP.

In Chapter 1 we saw that environment variables can be accessed by the implicit argument to the main 
function. We can also use the library function getenv() to request the value of any named environment 
variable.

http://bookboon.com/


Download free eBooks at bookboon.com

C Programming in Linux

47 

Logic, loops and flow control

Here we display the QUERY_STRING which is what the program gets as the entire contents of an HTML 
form which contains NAME=VALUE pairs for all the named form elements.

An HTML form by default uses the GET method which transmits all form data back to the program or 
page that contains the form unless otherwise specified in an action attribute. This data is contained in 
the QUERY_STRING as a series of variable = value pairs separated by the & character.

Calling this program in a browser we see a form and can enter some data in the boxes:

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

C Programming in Linux

48 

Logic, loops and flow control

And after submitting the form we see:

To make much sense of the QUERY_STRING and find a particular value in it, we are going to have to 
parse it, to chop it up into its constituent pieces and for this we will need some conditional logic (if, 
else etc.) and some loop to count through the characters in the variable. A basic function to do this 
would ideally be created as this is a task you might need to do do again and again so it makes sense to 
have a chunk of code that can be called over again.

In the next example we add this function and the noticeable difference in the output is that we can insert 
the extracted values into the HTML boxes after we have parsed them. We seem to have successfully 
created something like a java getParameter() function – or have we?

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a


Download free eBooks at bookboon.com

C Programming in Linux

49 

Logic, loops and flow control

Have a good long look at chapter4_2.c and try it out with characters other than A-Z a-z or numerals and 
you will see something is not quite right. There is some kind of encoding going on here!

If I were tp type DAVID !!! into the first field:

I get this result:

A space character has become a + and ! has become %21.

This encoding occurs because certain characters are explicitly used in the transmission protocol itself. 
The & for example is used to separate portions of the QUERY_STRING and the space cannot be sent 
at all as it is.

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

C Programming in Linux

50 

Logic, loops and flow control

Any program wishing to use information from the HTML form must be able to decode all this stuff 
which will now attempt to do.

The program chapter4_2.c accomplishes what we see so far. It has a main function and a decode_value 
function all in the same file.

The decode_value function takes three arguments:

the name of the value we are looking for “ITEM1=” or “ITEM2=”.
the address of the variable into which we are going to put the value if found
the maximum number of characters to copy

The function looks for the start and end positions in the QUERY_STRING of the value and then copies 
the characters found one by one to the value variable, adding a NULL charcter to terminate the string.

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5


Download free eBooks at bookboon.com

C Programming in Linux

51 

Logic, loops and flow control

It looks like we are going to have to do some serious work on this decode_value package so as this is 
work we can expect to do over and over again it makes sense to write a function that can be reused.

http://bookboon.com/


Download free eBooks at bookboon.com

C Programming in Linux

52 

Logic, loops and flow control

First off we can put this function into a separate file called decode_value.c and create a file for all the 
functions we may write called c_in_linux.h and compile all this into a library. In the Make file we can add:

This looks horrible and complex but all it means is this:
typing “make all” will:

compile all the *.c files listed in the list OBJ_SRC and into object files *.o
compile all the object files into a library archive called lib_c_in_linux.a
compile 4-4 using this new archive.

This is the model we will use to keep our files as small as possible and the share-ability of code at its 
maximum.

We can now have a simpler “main” function file, and files for stuff we might want to write as call-able 
functions from anywhere really which we do not yet know about. All this is organised into a library 
file (*.a for archive) – these can also be compiled as dynamically loadable shared objects *.so whch are 
much like Windows DLLs. This exactly how all Linux software is written and delivered.

For example the MySQL C Application Programmers Interface (API) comprises:

all the header files in /usr/include/mysql
the library file /usr/lib/mysql/libmysqlclient.a

http://bookboon.com/


Download free eBooks at bookboon.com

C Programming in Linux

53 

Logic, loops and flow control

What we are doing really is how all of Linux is put together – we are simply adding to it in the 
same way.

Our main file now looks like this:

This code calls the function decode_value in the same way but because the library, c_in_linux.a was 
linked in when it was compiled and as it has access to the header file c_in_linux.h that lists all the 
functions in the library it all works properly.

http://bookboon.com/


Download free eBooks at bookboon.com

C Programming in Linux

54 

Logic, loops and flow control

Try to describe the process in pseudocode of decoding this QUERY STRING:

get the QUERY_STRING
find the search string “ITEM1=” inside it
look for the end of the value of “ITEM1=”
copy the value to our “value” variable, translating funny codes such as:

%21 is ! %23 is #

These special codes are generated by the browser so that whatever you put in an HTML form will get 
safely transmitted and not mess about with the HTTP protocol. There are lot of them and the task for 
this chapter is to finish this task off so that EVERY key on your keyboard works as you think it should!!

Program chapter4_3.c calls this unfinished function decode_value which this far can only cope with the 
space character and ! – it uses if and else and for and the library function getenv, strcpy, strlen, ststr 
in a piece of conditional logic in which a string is analysed to find a specific item and this thing then 
copied into a piece of memory called value which has been passed to it.

The result shows the decoded value pasted into the first field;

http://bookboon.com/


Download free eBooks at bookboon.com

C Programming in Linux

55 

Logic, loops and flow control

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

C Programming in Linux

56 

Logic, loops and flow control

4.3	 Logic, loops and flow conclusion

The most important part of controlling the flow of your program is to have a clear idea about what it is 
you are trying to do. We have also learned to break our code up into manageable lumps, and started to 
build and use a library and header file of our own.

Being able to express a process in normal words or pseudocode is useful and helps you to break the 
code into steps.

Use for loops to explicitly count through things you know have an ending point.
Use while and do…while loops to do things until some condition changes.
Use switch statements to when integers or single characters determine what happens next.
Use if and else if and else when mutually exclusive things can be tested in a sequence.
Complex sets of if and else and not (!) conditionals can end up unreadable.
Use braces ({ }) to break it all up into chunks.

Exercise:

A useful task now would be to complete the function decode_value so you have a useful tool to grab 
web content from HTML forms decoding all the non alpha-numeric keys on your keyboard.
You will use this exercise again and again so it is worth getting it right.

EXPERIENCE THE POWER OF 
FULL ENGAGEMENT…

     RUN FASTER.
          RUN LONGER..
                RUN EASIER…

READ MORE & PRE-ORDER TODAY 
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd   1 22-08-2014   12:56:57

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf

